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Tuning Random Generators
Property-Based Testing as Probabilistic Programming
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“The most difficult and unsatisfactory part of 
engineering a good random tester is setting 
the probabilities properly.”


John Regehr (Blog Post)

Choosing probabilities is a “mental strain” that 
feels like it requires “[studying] probability and 
statistics.”


Property-Based Testing in Practice (ICSE 2024)
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Problem: 
Controlling test distributions is critical but difficult.

Goal: 
Automatically tune generators for desirable distributions.

Insight: 
View generators as probabilistic programs.
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Scaling generator tuning

Problem 2: Some objectives 
(e.g. entropy) enumerate a 

generator’s distribution

Solution: Approximate those 
gradients by sampling


(via gradient estimators, 
similar to REINFORCE)

Problem 1: Naïvely computing 
gradients requires enumerating 

all execution paths

Solution: SOTA technique for 
discrete probabilistic inference 

is differentiable, so it can 
compute gradients as well

[Darwiche 2005]
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But are there general 
objectives that improve 

bug-finding?
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Exercise more execution pathsSatisfy property preconditions

Incentivizes trivial samples! Incentivizes large, invalid samples!

∀tree k v. is_rbt(tree) → is_rbt(insert(tree,k,v))

⚔💥
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“Specification entropy”: Diversity within the valid 
subspace of samples.



28

Tuning for STLC terms of diverse types

…
2000

(log scale)
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Evaluation on ETNA PBT benchmarks [Shi et al. 2023]

Tuning type-based generators for spec. entropy: 3.1-7.4x faster bug-finding.
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Conclusion: Automate tuning to specify distributions 
declaratively and generate diverse and valid test cases.

Loaded Dice: https://github.com/Tractables/Alea.jl/tree/loaded-dice

Ryan

Tjoa

Poorva

Garg
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Pierce

Guy

Van den Broeck
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More in the paper! 
• Derive “tunable” generators from type definitions.

• A gradient estimator for specification entropy.

• Tuning a backtracking well-typed STLC generator.

https://github.com/Tractables/Alea.jl/tree/loaded-dice

