
Ryan Tjoa, Poorva Garg, Harrison Goldstein, Todd Millstein, Benjamin C. Pierce, Guy Van den Broeck

Tuning Random Generators
Property-Based Testing as Probabilistic Programming

System
Under
Test

Property-based testing (PBT)

System
Under
Test

Property

Property-based testing (PBT)

System
Under
Test

Property

∀list. reverse(reverse(list)) = list

Property-based testing (PBT)

4

Random Data
Generator

System
Under
Test

Property

Property-based testing (PBT)

∀list. reverse(reverse(list)) = list

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 1, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

5

A generator and its distribution

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 1, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

5

Uniformly
choose from
two branches

A generator and its distribution

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 1, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

5

Uniformly
choose from
two branches

50% true

50% false

A generator and its distribution

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 1, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

5

[]
[F]
[]
[]
[T;F;F]
[]
[T]
[]
[F]
[]
...

Uniformly
choose from
two branches

50% true

50% false

A generator and its distribution

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 1, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

5

[]
[F]
[]
[]
[T;F;F]
[]
[T]
[]
[F]
[]
...

Uniformly
choose from
two branches

50% true

50% false

A generator and its distribution

6

A generator and its distribution

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 3, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

6

[T;F;T;T]
[T;F;F]
[T;F;T]
[F;T;T;F;T;T;F;F;T;T]
[F]
[T]
[T;T;T;T;T;F;F;F;F]
[F;T;T;T]
[F;F;T;F]
[]
...

A generator and its distribution

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 3, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

7

[T;F;T;T]
[T;F;F]
[T;F;T]
[F;T;T;F;T;T;F;F;T;T]
[F]
[T]
[T;T;T;T;T;F;F;F;F]
[F;T;T;T]
[F;F;T;F]
[]
...

A generator and its distribution

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 3, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]In general, it’s difficult to

reason how weights
affect the distribution

7

[T;F;T;T]
[T;F;F]
[T;F;T]
[F;T;T;F;T;T;F;F;T;T]
[F]
[T]
[T;T;T;T;T;F;F;F;F]
[F;T;T;T]
[F;F;T;F]
[]
...

A generator and its distribution

What distribution do
we want?

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 3, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]In general, it’s difficult to

reason how weights
affect the distribution

8

“The most difficult and unsatisfactory part of
engineering a good random tester is setting
the probabilities properly.”

John Regehr (Blog Post)

Choosing probabilities is a “mental strain” that
feels like it requires “[studying] probability and
statistics.”

Property-Based Testing in Practice (ICSE 2024)

9

Problem:
Controlling test distributions is critical but difficult.

9

Problem:
Controlling test distributions is critical but difficult.

Goal:
Automatically tune generators for desirable distributions.

9

Problem:
Controlling test distributions is critical but difficult.

Goal:
Automatically tune generators for desirable distributions.

Insight:
View generators as probabilistic programs.

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 1, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

10

Generators are probabilistic programs

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 1, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

11

Generators are probabilistic programs

{
 [] 0.5
 [F] 0.125
 [T] 0.125
 [F;F] 0.03125
 ...
}

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 1, [];
 1, let x = flip 0.5 in
 let xs = genList n’ in
 x :: xs
]

11

=

Generators are probabilistic programs

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 θN, [];
 θC, let x = flip θT in
 let xs = genList n’ in
 x :: xs
]

12

=

Generators are probabilistic programs

{
 [] 0.5
 [F] 0.125
 [T] 0.125
 [F;F] 0.03125
 ...
}

13

=

Generators are probabilistic programs

{
 [] θN/(θN+θc)
 [F] (1-θT)θNθC/(θN+θC)2
 [T] θTθNθC/(θN+θC)2
 [F;F] (1-θT)2θNθC2/(θN+θC)3
 ...
}

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 θN, [];
 θC, let x = flip θT in
 let xs = genList n’ in
 x :: xs
]

14

=

Generators are probabilistic programs

{
 [] θN/(θN+θc)
 [F] (1-θT)θNθC/(θN+θC)2
 [T] θTθNθC/(θN+θC)2
 [F;F] (1-θT)2θNθC2/(θN+θC)3
 ...
}

“Maximize Pr([F;F])”

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 θN, [];
 θC, let x = flip θT in
 let xs = genList n’ in
 x :: xs
]

15

=

Generators are probabilistic programs

{
 [] θN/(θN+θc)
 [F] (1-θT)θNθC/(θN+θC)2
 [T] θTθNθC/(θN+θC)2
 [F;F] (1-θT)2θNθC2/(θN+θC)3
 ...
}

“Maximize Pr([F;F])”

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 θN, [];
 θC, let x = flip θT in
 let xs = genList n’ in
 x :: xs
]

16

=

Generators are probabilistic programs

{
 [] θN/(θN+θc)
 [F] (1-θT)θNθC/(θN+θC)2
 [T] θTθNθC/(θN+θC)2
 [F;F] (1-θT)2θNθC2/(θN+θC)3
 ...
}

θN = 1, θC = 2, θT = 0“Maximize Pr([F;F])”

let genList n =
 match n with
 | 0 -> []
 | S n’ ->
 freq [
 θN, [];
 θC, let x = flip θT in
 let xs = genList n’ in
 x :: xs
]

17

Generator with
Symbolic Weights

?

Probabilistic
Objective

Tuned
WeightsGenerator Tuning

17

Generator with
Symbolic Weights

?

Probabilistic
Objective

Tuned
WeightsGenerator Tuning

Contribution I: LOADED DICE,

a probabilistic programming

system with parameter tuning

17

Generator with
Symbolic Weights

?

Probabilistic
Objective

Tuned
WeightsGenerator Tuning

Contribution I: LOADED DICE,

a probabilistic programming

system with parameter tuning

Contribution II:
Generator-independent

objectives

17

Generator with
Symbolic Weights

?

Probabilistic
Objective

Tuned
WeightsGenerator Tuning

Contribution I: LOADED DICE,

a probabilistic programming

system with parameter tuning

Contribution II:
Generator-independent

objectives

Type-derived
generators find bugs

3.1-7.4x faster!

18

Generator with
Symbolic Weights

?

Probabilistic
Objective

Tuned
WeightsGenerator Tuning

Contribution I: LOADED DICE,

a probabilistic programming

system with parameter tuning

Contribution II:
Generator-independent

objectives

Type-derived
generators find bugs

3.1-7.4x faster!

Contribution II:
Generator-independent

objectives

Type-derived
generators find bugs

3.1-7.4x faster!

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

?

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

?
if flip(θ) then 2 else 3

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

?
if flip(θ) then 2 else 3

“Target distribution {2 1.0}”

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

?
if flip(θ) then 2 else 3

“Target distribution {2 1.0}”

Distribution ℝ

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

Symbolic
Distribution

?
{ 2 θ, 3 1-θ }if flip(θ) then 2 else 3

?

“Target distribution {2 1.0}”

Distribution ℝ

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

Symbolic
Distribution

?
{ 2 θ, 3 1-θ }if flip(θ) then 2 else 3

?

Loss
Function

-log(θ)

“Target distribution {2 1.0}”

Distribution ℝ

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

Symbolic
Distribution

?
{ 2 θ, 3 1-θ }if flip(θ) then 2 else 3

?

Loss
Function

θ = 1.0
-log(θ)

“Target distribution {2 1.0}”

Distribution ℝ

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

Symbolic
Distribution

?
{ 2 θ, 3 1-θ }if flip(θ) then 2 else 3

?

Loss
Function

θ = 1.0
-log(θ)

“Target distribution {2 1.0}”

Distribution ℝ

Probabilistic Inference

19

Probabilistic
Objective

Tuned
Weights

Generator Tuning

Generator with
Symbolic Weights

Symbolic
Distribution

?
{ 2 θ, 3 1-θ }if flip(θ) then 2 else 3

?

Loss
Function

θ = 1.0
-log(θ)

“Target distribution {2 1.0}”

Distribution ℝ

Probabilistic Inference

Gradient
Descent

20

Scaling generator tuning

20

Scaling generator tuning

Problem 1: Naïvely computing
gradients requires enumerating

all execution paths

20

Scaling generator tuning

Problem 1: Naïvely computing
gradients requires enumerating

all execution paths

Solution: SOTA technique for
discrete probabilistic inference

is differentiable, so it can
compute gradients as well

20

Scaling generator tuning

Problem 1: Naïvely computing
gradients requires enumerating

all execution paths

Solution: SOTA technique for
discrete probabilistic inference

is differentiable, so it can
compute gradients as well

[Darwiche 2005]

20

Scaling generator tuning

Problem 2: Some objectives
(e.g. entropy) enumerate a

generator’s distribution

Problem 1: Naïvely computing
gradients requires enumerating

all execution paths

Solution: SOTA technique for
discrete probabilistic inference

is differentiable, so it can
compute gradients as well

[Darwiche 2005]

20

Scaling generator tuning

Problem 2: Some objectives
(e.g. entropy) enumerate a

generator’s distribution

Solution: Approximate those
gradients by sampling

(via gradient estimators,
similar to REINFORCE)

Problem 1: Naïvely computing
gradients requires enumerating

all execution paths

Solution: SOTA technique for
discrete probabilistic inference

is differentiable, so it can
compute gradients as well

[Darwiche 2005]

21

Generator with
Symbolic Weights

?

Probabilistic
Objective

Tuned
WeightsGenerator Tuning

Contribution I: LOADED DICE,

a probabilistic programming

system with parameter tuning

Contribution II:
Generator-independent

objectives

Contribution II:
Generator-independent

objectives

22

Generator with
Symbolic Weights

?

Tuned
WeightsGenerator Tuning

Probabilistic
Objective Contribution II:

Generator-independent
objectives

Contribution I: LOADED DICE,

a probabilistic programming

system with parameter tuning

23

Untuned
Generator

Desired
Distribution

Tuned
Generator

24

Untuned
Generator

Desired
Distribution

Tuned
Generator

But are there general
objectives that improve

bug-finding?

25

Validity and diversity are desirable but conflict.

25

Satisfy property preconditions

Validity and diversity are desirable but conflict.

25

Satisfy property preconditions

∀tree k v. is_rbt(tree) → is_rbt(insert(tree,k,v))

Validity and diversity are desirable but conflict.

25

Satisfy property preconditions

Incentivizes trivial samples!

∀tree k v. is_rbt(tree) → is_rbt(insert(tree,k,v))

Validity and diversity are desirable but conflict.

25

Satisfy property preconditions

Incentivizes trivial samples!

∀tree k v. is_rbt(tree) → is_rbt(insert(tree,k,v))

Validity and diversity are desirable but conflict.

25

Exercise more execution pathsSatisfy property preconditions

Incentivizes trivial samples!

∀tree k v. is_rbt(tree) → is_rbt(insert(tree,k,v))

Validity and diversity are desirable but conflict.

25

Exercise more execution pathsSatisfy property preconditions

Incentivizes trivial samples! Incentivizes large, invalid samples!

∀tree k v. is_rbt(tree) → is_rbt(insert(tree,k,v))

Validity and diversity are desirable but conflict.

25

Exercise more execution pathsSatisfy property preconditions

Incentivizes trivial samples! Incentivizes large, invalid samples!

∀tree k v. is_rbt(tree) → is_rbt(insert(tree,k,v))

Validity and diversity are desirable but conflict.

Validity and diversity are desirable but conflict.

26

Exercise more execution pathsSatisfy property preconditions

Incentivizes trivial samples! Incentivizes large, invalid samples!

∀tree k v. is_rbt(tree) → is_rbt(insert(tree,k,v))

⚔💥

27

“Specification entropy”: Diversity within the valid
subspace of samples.

28

Tuning for STLC terms of diverse types

…
2000

(log scale)

29

Evaluation on ETNA PBT benchmarks [Shi et al. 2023]

Tuning type-based generators for spec. entropy: 3.1-7.4x faster bug-finding.

30

Conclusion: Automate tuning to specify distributions
declaratively and generate diverse and valid test cases.

Loaded Dice: https://github.com/Tractables/Alea.jl/tree/loaded-dice

Ryan

Tjoa

Poorva

Garg

Todd

Millstein

Benjamin

Pierce

Guy

Van den Broeck

Harry

Goldstein

More in the paper!
• Derive “tunable” generators from type definitions.

• A gradient estimator for specification entropy.

• Tuning a backtracking well-typed STLC generator.

https://github.com/Tractables/Alea.jl/tree/loaded-dice

