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Choosing probabilities is a “mental strain” that
feels like it requires “[studying] probability and
statistics.”

Property-Based Testing in Practice (ICSE 2024

“The most difficult and unsatistactory part of
engineering a good random tester Is setting
the probabilities properly.”

John Regehr (Blog Post

Property-Based Testing in Practice

Harrison Goldstein
University of Pennsylvania
Philadelphia, PA, USA
hgo@seas.upenn.edu

Benjamin C. Pierce
University of Pennsylvania
Philadelphia, PA, USA
bepierce@seas.upenn.edu

ABSTRACT

Property-based testing (PBT) is a testing methodology where users
write executable formal specifications of software components and
an automated harness checks these specifications against many
automatically generated inputs. From its roots in the QuickCheck
library in Haskell, PBT has made significant inroads in mainstream
languages and industrial practice at companies such as Amazon,
Volvo, and Stripe. As PBT extends its reach, it is important to un-
derstand how developers are using it in practice, where they see
its strengths and weaknesses, and what innovations are needed to
make it more effective.

We address these questions using data from 30 in-depth inter-
views with experienced users of PBT at Jane Street, a financial tech-
nology company making heavy and sophisticated use of PBT. These
interviews provide empirical evidence that PBT’s main strengths
lie in testing complex code and in increasing confidence beyond
what is available through conventional testing methodologies, and,
moreover, that most uses fall into a relatively small number of high-
leverage idioms. Its main weaknesses, on the other hand, lie in the
relative complexity of writing properties and random data genera-
tors and in the difficulty of evaluating their effectiveness. From these
observations, we identify a number of potentially high-impact areas
for future exploration, including performance improvements, dif-
ferential testing, additional high-leverage testing scenarios, better
techniques for generating random input data, test-case reduction,
and methods for evaluating the effectiveness of tests.

1 INTRODUCTION

Property-based testing (PBT) is a powerful tool for evaluating soft-
ware correctness. The process of PBT starts with a developer decid-
ing on a formal specification that they want their code to satisfy
and encoding that specification as an executable property. An au-
tomated test harness checks the property against their code using
hundreds or thousands of random inputs, produced by a generator.
If this process discovers a counterexample to the property—an input
value that causes it to fail—the developer is notified.
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The research literature is full of accounts of PBT successes, e.g.,
in telecommunications software [2], replicated file [31] and key-
value [8] stores, automotive software [3], and other complex sys-
tems [30]. PBT libraries are available in most major programming
languages, and some now have significant user communities—e.g.,
Python’s Hypothesis framework [37] had an estimated 500K users
in 2021 according to a JetBrains survey [32]. Still, there is plenty of
room for growth. Half a million Hypothesis users represent only 4%
of the total Python user base, whereas the Hypothesis maintainers
estimate [15] that the “addressable market” is at least 25%. (For
comparison, the most popular testing framework, pytest, has 50%
market share.)

To help move PBT toward wider adoption, the research commu-
nity (ourselves included) needs to better understand the practical
strengths and weaknesses of PBT and the places where further
technical advances are required. Existing work in the software engi-
neering literature has studied how other bug-finding tools are used
in practice (see §6), but PBT offers a unique set of tools and warrants
its own investigation. Accordingly, we interviewed PBT users at
Jane Street, a financial technology firm that makes significant use
of PBT, to learn how they use PBT, where they see its value, and in
what ways they think it might be improved. Concretely, we aimed
to answer two main questions:

RQ1: What are the characteristics of a successful and mature PBT
culture at a software company?

RQ2: Are there opportunities for future work in the PBT space
that are motivated by the needs of real developers?

The first question aims both to offer guidance for engineers and
managers considering whether PBT might fit well in their organi-
zations and to provide a basis for evaluating and comparing PBT
technologies. The second question aims to help shape further re-
search to maximize the impact of PBT.

Our findings contribute a wide range of observations about de-
velopers’ experiences with PBT, adding nuance to the research
community’s understanding of PBT’s real-world usage. Through
our interviews, we gleaned several new insights about the situa-
tions in which property-based tests are deployed in practice. We
found that developers use PBT mainly for testing components of
complex systems, expecting the tests to provide greater confidence
than conventional example-based unit tests yet still run quickly as
part of their normal test suite. Interestingly, we also found that de-
velopers leverage PBT for the secondary benefit of communicating
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Scaling generator tuning

Problem 1: Naively computing Problem 2: Some objectives
gradients requires enumerating (e.g. entropy) enumerate a

all execution paths - ~ generator’s distribution

T| F
L /
Solution: SOTA technigue for Solution: Approximate those
discrete probabillistic inference gradients by sampling
Is differentiable, so it can (via gradient estimators,

compute gradients as well similar to REINFORCE)
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“Specification entropy”: Diversity within the valid
subspace of samples.
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Tuning for STLC terms of diverse types
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Evaluation on ETNA PBT benchmarks [Shi et al. 2023]

Tuning type-based generators for spec. entropy: 3.1-7.4x faster bug-finding.
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Conclusion: Automate tuning to specify distributions

declaratively and generate diverse and valid test cases.

Loaded Dice: https://qgithub.com/Tractables/Alea.|l/tree/loaded-dice

More in the paper!
* Derive “tunable” generators from type definitions.

* A gradient estimator for specification entropy.
* Tuning a backtracking well-typed STLC generator.

Poorva Harry
Garg Goldstein Millstein Pierce Van den Broeck

Benjamin Guy
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